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Abstract
This paper deals with the adaptation of energy-based realization-preserving model-reduction techniques for object-
oriented models implemented in Modelica. An approach originally developed for bond graphs, where energy-related
heuristics were used to identify the componentf8.s contributing the most to the model’s salient dynamics, was extended
to more heterogeneously formulated models in Modelica. A prototype toolbox was developed inside the modeling envi-
ronment OpenModelica. Its applicability was demonstrated with two examples. Although the model-reduction tool can-
not reduce the model completely automatically, it may still offer many useful insights and hints to the user.
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1. Introduction

A central guideline in modeling is that a model should not

be more complex than is necessary for a given purpose.

So, possible simplifications must be thought of in all mod-

eling phases. Good and usable models are usually appro-

priately simplified models. However, it is not always

obvious what to include in the model and what to leave

out. A more accurate model usually also needs to be more

complex, which can reduce the physical insights provided

by the model and can be inadmissable for some applica-

tions (e.g., control design). Therefore, a trade-off between

the accuracy and the simplicity of the model must be also

taken into account. Although this paper is focused on a

very specific realization-preserving model reduction in

Modelica, perhaps the most important modeling phase –

model validation – must not be forgotten. This is a very

complex procedure that checks also the complete range of

possible model operations. If the complete model (before

simplification) is supposed to work for a wide range of

operations, it is obvious that the simplified model probably

works in more limited area. These restrictions or limita-

tions should be known when using simplified models.

The proper complexity of a model is even more diffi-

cult to achieve in a component-based modeling approach

because a rich selection of detailed components is often

available, which makes it possible to build very complex

models at the outset.1 However, in many cases the model

is found to be too complex and is subsequently simplified.

This reduction of the model’s complexity is an intricate and

tedious task. Consequently, numerous automatic model-

reduction methods have been developed and the subject

remains an active research topic.2 In some fields, for exam-

ple, integrated circuit design, they have become an indispen-

sable part of the system analysis and hence are provided as

part of domain-specific modeling environments.3

There are numerous approaches to reduce the complex-

ity of a model. All of them depend to a large extent on the

problem domain, the modeling methodology used, and the

purpose of the model.2 The fewer restrictions that are

imposed on a reduced model the more efficient the reduc-

tion algorithm can be. Hence, the most successful model-

reduction methods are mostly not realization-preserving –

the reduced model retains only the input–output behavior

of the system and loses the physical interpretability of its

structure and parameters. For example, model reduction

using principal component analysis (PCA; also referred to

as the Karhunen–Loève expansion)4 transforms a set of

state variables of a model to a different set of state
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variables that are usually no longer physically interpreta-

ble. Furthermore, in some cases it may be no longer possi-

ble to simulate the reduced model with the simulator of

the modeling environment that was used to design the full

model.5

Although the preservation of realization is a very suit-

able and desirable property in many modeling applica-

tions, realization-preserving reduction methods are not so

frequently dealt with in the literature or used in applica-

tions, because the reduced models usually have diminished

performances, at least in comparisons with reduction

approaches where structures between inputs and outputs

can be arbitrarily changed. Moreover, most of the existing

realization-preserving methods are limited to certain types

of models, for example, RC circuits,5 or a modeling meth-

odology, for example, bond graphs.6 Therefore, the imple-

mentation of these approaches in modeling Modelica-like

environments that support the building of very heteroge-

nous and multi-domain models with mixed modeling

methodologies is not a straightforward task. There are no

realization-preserving model-reduction methods known to

the authors that could adequately handle multi-domain

models implemented in contemporary object-oriented

modeling languages, such as Modelica.

This paper focuses on lumped-parameter, continuous-

time, and deterministic dynamic models and attempts to

generalize the realization-preserving model-reduction tech-

niques developed for bond graphs so as to be also applica-

ble to more general and heterogenous models implemented

in Modelica.7,8

The structure of the paper is the following: in Section 2

the basic idea of the realization-preserving model reduc-

tion is presented. The types of elementary reduction opera-

tions are described. Then the general procedure for model

reduction and appropriate ranking metric are introduced.

Section 3 is devoted to the energy-based ranking metrics

developed to evaluate the importance of model compo-

nents. Section 4 describes the reduction of object-oriented

models in Modelica. Here the problems of energy-flow

calculations from the variables defined in connector defini-

tions is discussed. The ranking procedure and component

elimination are implemented by modifying the Modelica

translation process, adding instrumentation, metric calcula-

tion, and ranking. Section 5 includes illustrative examples:

a simplified car suspension model and a direct current

(DC) motor model. Section 6 briefly discusses the reduc-

tion based on model equations.

2. Realization-preserving model
reduction

All realization-preserving model-reduction techniques use

the same strategies to reduce the complexity of the model:

in order to preserve the realization, parts of the model that

contribute to the negligible dynamics of the system can

either be completely removed or replaced with simpler

parts.

The choice of elementary reduction operations (i.e., the

removal or replacement of an elementary part of the

model) depends strongly on the modeling methodology:

the more complex the modeling formalism (e.g., modeling

language) used, the more complex the reduction steps that

must be undertaken in order to enable sufficient reduction

and simplification of the model.

Furthermore, the sequence and applicability of the

reduction operations must be determined. This is accom-

plished by calculating the error prediction of each reduc-

tion operation with respect to an objective function (i.e.,

ranking metric) and applying reduction operations whose

cumulative error prediction falls below a certain threshold.

Most commonly, error predictions are calculated from the

model’s response, which is obtained by a simulation.

Therefore, the general procedure for model reduction con-

sists of the following steps:

1. a series of simulation runs;

2. individual reduction operations are ranked by the

appropriate metric;

3. reduction operations that fall below a certain

threshold are applied;

4. the reduced model is verified by simulation.

Besides the chosen set of appropriate elementary reduc-

tion operations, which is usually fairly limited in the case

of realization-preserving model reduction, the ranking

metric is the most important aspect of reduction methods

that influences their effectiveness.

The most straightforward ranking metric is simply to

perform simulation runs for all possible reduction opera-

tions and compare the responses of the full and reduced

models for particular variables of interest through particu-

lar error or criteria evaluations. However, such an

approach is obviously too computationally demanding to

have a practical meaning. In practical solutions, a trade-

off between the accuracy of a reduction solution and the

computational efficiency is sought.

However, it is usually difficult to efficiently predict the

error that the reduction operation would introduce to

the model in absolute terms, that is, the difference between

the full and reduced model trajectories. Therefore, alterna-

tive ranking metrics are frequently used to produce a relative

ranking, that is, only the order of the reduction operations

according to their impact on the model is provided. These

metrics are mostly based on intuition, for example, the char-

acteristic time constant of each part of the model is calcu-

lated and then those parts outside the frequency range of

interest are removed. Similarly, the energy associated with

submodels can be used to identify submodels that are contri-

buting (in)significantly to the dominant system dynamics.
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The choice of the ranking metric is closely related to a

model formulation from which the required quantities

(e.g., characteristic time constants, energy, etc.) for the

metric evaluation should be easily extracted.

3. Energy-based ranking metrics

Successful ranking metrics based on intuition are usually

related to energy or power. A basic presumption of energy-

related metrics is that the components associated with neg-

ligible energy, that is, a little energy is stored or dissipated

by the component in comparison with the other compo-

nents, also negligibly influence the dominant system

dynamics and can thus be eliminated from the model with-

out changing its behavior significantly.

Although the majority of analytical models are derived

from first principles, that is, the conservation of energy,

the energy or power is usually not explicitly available in

the model, that is, it is not a variable of the model.

Therefore, an explicit procedure for energy or energy-flow

calculations must be explicitly provided for the model

(e.g., Lyapunov function9) or the model must be formu-

lated accordingly so that the energy can be unambiguously

calculated for each component.

Energy-based metrics were systematically developed

for bond graphs, a graphical object-oriented modeling

formalism, where the energy flow associated with each

component (i.e., the elementary submodel) is straightfor-

ward to determine. Each component is connected with a

bond (acausal link) to the rest of the model and the bond

consists of a pair of variables whose product always equals

the power (or energy).

Some of the ranking metrics developed to evaluate the

importance of components or bonds (connections) for

either model reduction6,10 or model partitioning11 are

briefly presented in this section. Because they rely on the

results obtained by the simulation and therefore depend

strongly on the chosen simulation scenario (i.e., model

excitation), the resulting component ranking is only valid

inside a limited range.

3.1. Root mean square power

Rosenberg and Ermer12 used bond graphs to visualize the

dynamic response. Based on their simulation experiments

they decided to use the RMS (root mean square) value of

the energy flow (for the time interval ½t1, t2�) associated

with each bond (connected to a component) as a time-

independent measure:

P=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t2 � t1

ðt2

t1

X
j

_ej(t)

 !2

� dt

vuut ð1Þ

In Equation (1), _ej(t) designates the jth energy flow

through the boundary of an element. Each bond was

colored according to the hierarchical color scheme.

Rosenberg and Zhou13 suggested that the bonds (and

associated submodels) with low RMS power could be

omitted without introducing a significant error. However,

Rosenberg and Zhou did not provide any systematic pro-

cedure for the model reduction.

3.2. Activity

Louca14 introduced the activity of elements, an integral of

the absolute value of all the energy the element (submodel)

has exchanged with its surroundings within a given time

interval ½t1, t2�:

Ai =

ðt2

t1

j
X

j

_ej(t)j � dt ð2Þ

In Equation (2) _ej(t) has the same meaning as in Equation

(1).

Activity has a physical meaning: it represents the

amount of energy that flows through the element during a

given time interval. It differs from the total RMS energy

flow of an element by putting less weight on the peak val-

ues, since it uses the absolute norm instead of the square

averaging.

Before the element ranking, the activities of all the ele-

ments should be normalized, which means that they are

divided by the sum of all the element activities (the total

activity of the system):

AIi =
AiPn

j= 1 Aj

ð3Þ

so that a time-independent measure is obtained. The nor-

malized activity measure was dubbed the activity index

(AI) by Louca.14

3.3. Karhunen–Loève expansion of the bond energy
flows

The RMS power and activity metrics depend solely on the

magnitude of the energy flows associated with the bonds.

Ersal15 tried to further improve the relative importance of

the evaluation of energetic connections by also considering

the correlations between energy trajectories. Therefore, he

applied the Karhunen–Loève expansion (also referred to as

PCA) of the energy-flow trajectories.

Firstly, all of the energy-flow trajectories are arranged

column-wise in the matrix S:

S= _e1 _e2 . . . _en½ � ð4Þ
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Each trajectory _ei in Equation (4) is a vector consisting

of m observations and the matrix S consists of n

trajectories.

Secondly, a singular value decomposition of the matrix

S yields the following:

S=USVT ð5Þ

In Equation (5), the matrix S is a diagonal matrix with sin-

gular values s1, s2, .sn on the diagonal and the columns

of U and the rows of V are the left- and right-hand singular

vectors, respectively.

Finally, the importance vector Ii is calculated from the

singular values and vectors of the matrix V as follows:

Ii =
Xn

j= 1

s2
j jvi, jj for i = 1, 2, . . . , n ð6Þ

The relative importance of the element is obtained by nor-

malizing the importance vector of the associated bond.

3.4. Relative energy

The energy-related ranking metrics described so far per-

form badly when used on models with a salient dynamics

that is sensitive to elements associated with a small

energy. They also fail to eliminate the elements associated

with high energy levels contributing little to the system

dynamics.

In order to overcome these limitations, Ye and Youcef-

Toumi16 developed a new metric. The basic premise of

their metric is that the dynamic behavior of an individual

independent energy-storage element is dictated by the

energy exchange with the neighboring bonds. Neighboring

bonds are bonds connected to the same junction as the

bond associated with the energy-storage element. Since

energy is conserved in the exchange, the change of energy

associated with the element, DE1(t), can be expressed as

the sum of the energy changes of the neighboring bonds,

where n is the number of bonds in the junction:

DE1(t)=
Xn

j= 2

DEj(t) ð7Þ

Each independent storage element introduces a state vari-

able into the model and the change of the state variable

Dx1 attributed to the removal of the ith neighboring bond,

which has a low energy level, is stated by the following

linearized expression with respect to Ei(t):

Dx1(t)=C(DE1(t))�C0(DE1(t))DEi(t) ð8Þ

In Equation (8), C(�) designates the function that deter-

mines a state variable from the energy of the element and

C0(�) is its derivative: C0(x)= dC(x)=dx.

Two propositions are derived from Equation (8) for the

determination of the bonds connected to a junction, only

negligibly affecting the dynamic behavior of the ith stor-

age element, which is also connected to the same junction:

jj
Xm

k = 1

jDEk(t)jjj‘ � jjDEi(t)jj‘ ð9Þ

jjC0(DEi(t))
Xm

k = 1

jDEk(t)jjj‘ � jjC(DEi(t))jj‘ ð10Þ

Equation (9) requires that the sum of the energy flows of

m bonds, which may be removed, must be much smaller

than the energy flow of the ith storage element connected

to the same junction. Furthermore, the sensitivity of the

storage element, the second term on the right-hand side of

Equation (8), is taken into account by Equation (10). In

Equations (9) and (10), jj�jj‘ denotes the infinity

(Chebyshev) norm.

Finally, a set of all the negligible bonds in the model is

a union of all the bonds that can be removed locally

according to Equations (9) and (10).

4. Reduction of object-oriented models in
Modelica

4.1. Energy in Modelica models

Object-oriented models implemented in Modelica use sim-

ilar structuring concepts as bond graphs and thus it is not

unreasonable to expect that bond-graph reduction tech-

niques can be also used for models in Modelica with

appropriate adaptations. However, Modelica leans toward

generality and does not make any assumptions about the

physics of the modeled system in order to optimize the

translation or simulation of the model. Therefore, there is

no notion of energy or power in the language itself or, in

other words, information about the energy calculation

must be provided explicitly to the reduction algorithm so

that an energy-based ranking of the components can be

calculated.

The structuring concept of Modelica is illustrated in

Figure 1.

Submodels, which in Figure 1 are represented by

squares, are connected with each other, that is, through

their ports, which are called connectors in Modelica. The

connections represent interactions between the submodels,

and the type of the interaction is defined by a connector

definition. The latter is a list of variables, and for all

mutually connected connectors (i.e., a connection set)

appropriate equations are generated that relate the corre-

sponding variables of the connectors. The kind of equa-

tions that need to be generated is defined at the declaration

of the connector variables. A variable in the connector can

be either the potential (effort in bond-graph terminology)
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variable ei, which means that the variables in a connection

set are equalized:

ei = ej 8i 6¼ j ð11Þ

or a flow variable fi, which means that the sum of all the

variables in a connection set equals zero:

X
i

fi = 0 ð12Þ

There is also a special type of connector variable, called

stream, that is intended for modeling interactions includ-

ing mass and energy transfer. No equations are generated

by default for this variable (instead, special operators are

provided to generate equations depending on the context

in which they are used).

In Modelica (using the Modelica bond-graph library17)

it is possible to describe a model with a bond graph by

defining the connections with the bonds, each having a pair

of variables, potential and flow, respectively, whose prod-

uct is the power. In this case the model-reduction methods

described in the previous section can be used directly.

However, the majority of model libraries in Modelica do

not use bond-graph formalism and there is no uniform way

to calculate the energy associated with a component or a

connection provided by most of the libraries. Therefore,

this information must be supplied explicitly to the model-

reduction method. The most sensible approach is to calcu-

late the energy flow of the connections, because usually

very few different types of connectors are used, and then

the net energy flow to the component can be obtained from

the law of energy conservation:

_ei(t)= �
X

j

_ei, j(t) ð13Þ

In Equation (13), _ei(t) denotes the net energy flow of the

ith component and _ei, j(t) represents the energy flows of

its connections (i.e., the energy exchanged with the

environment).

Nevertheless, this approach is only applicable if the

energy flow can only be calculated from the variables

declared in the connector definition – usually this is the

case. An investigation of connector definitions in the

Modelica Standard Library, a collection of the most com-

mon components from all the major physical domains,

proved that all connectors of the library are defined appro-

priately.18,19 Some are analyzed in the next section.

4.2. Analysis of energy interactions in Modelica
libraries

As mentioned, connectors usually contain a pair of poten-

tial and flow variables. However, their product is not

necessarily an energy flow like in bond-graph formalisms.

This can be seen by inspecting the Modelica Standard

Library,20 where elementary connector definitions for

almost all physical domains are gathered.

� Interaction between components in analog circuits

(Modelica.Electric) is determined by voltage v and

current i, the latter is a flow variable, and the power

of the interaction is the product of both variables:

_e= v � i.
� Similar features also have a connector in

Modelica.Magnetic, which is composed of vari-

ables for magnetic potential difference Vm and

magnetic flux F, potential and flow variables,

respectively. The power of the connection is the

product of both variables: _e=Vm � F.
� Connectors used for modeling one-dimensional

(1D) translational and rotational mechanical sys-

tems consist of position s and angle f, respectively,

and force f and torque t, respectively. However,

the product of connector potential and flow vari-

ables is no longer the power. For determination

of the power of the connection, the displacement

variable has to be differentiated: _e= d
dt

s � f and

_e= d
dt

f � t for translational and rotational

mechanics, respectively.
� In the Modelica Multibody library, which deals

with three-dimensional (3D) mechanics, potential

and flow variables are no longer scalars; rather,

they are six-dimensional vectors, so the state of a

free-body (having six degrees-of-freedom) can be

determined. Furthermore, due to computational

restrictions, implementation of the connector takes

into account also the suitable selection of a frame

of reference (forces, torques, and orientation are

expressed in the local frame of reference, while

position is in the global frame of reference). A defi-

nition of the connector is as follows:

connector Frame
SI.Position r_0[3];
Frames.Orientation R;
flow SI.Force f[3];
flow SI.Torque t[3];
end Frame;

Figure 1. The connection of three components.
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The position is determined with the variable r 0, while

the orientation R is a structure containing the transforma-

tion matrix T from the global to the local frame of the ref-

erence and the vector of angular velocities v in the local

frame of reference. Forces and torques are given by vec-

tors f and t, respectively. The power of the connection can

be calculated by the expression _e= d
dt
(T � ro) � f+v � t,

where again there is a need to differentiate the position

after transformation to the local frame.

� The connector for modeling the heat transfer in one

dimension consists of the potential variable for tem-

perature T and the flow variable for the heat-flow

rate Qflow. The energy transfer is in this case equal

to the flow variable _e=Qflow.
� The library Modelica.Fluid deals with the modeling

of heat and mass transfer. The connector used in the

library components that also covers mass transfer is

implemented as follows:

connector FluidPort
replaceable package Medium =
Modelica.Media.Interfaces.PartialMedium;
flow Medium.MassFlowRate m_flow;
Medium.AbsolutePressure p;
stream Medium.SpecificEnthalpy h_outflow;
stream Medium.MassFraction
Xi_outflow[Medium.nXi];
end FluidPort;

Besides potential and flow variables, pressure p and

mass-flow rate mflow, respectively, the connector includes also

additional information about properties of the substance that

is being exchanged in the interaction modeled by a connec-

tion of type FluidPort: specific enthalpy h and composition

of the substance (vector of mass fractions Xi if the substance

is a mixture). The thermodynamic state of the substance is

uniquely determined by the variables of the connector and all

the other (thermodynamic) properties can be calculated by

using functions provided by the package Medium, which is a

parameter of the connector. However, thermal diffusion is

not covered by this connector (it is neglected).

Energy flow associated with the connector is composed

of thermal, hydraulic, and chemical terms and can be cal-

culated as follows21: _e= _m � s � T + _m � p=r+
P

mi � _Ni.

Quantities of specific entropy s, temperature T, density r,

chemical potential mi, and molar flow _Ni can be calculated

from the thermodynamical state equations provided by the

package Medium.

Although it is possible to calculate the energy flow of

the connector from the variables of the connector, this can

be problematic to do from simulation results, because

some variables may not be available. For example, the

derivative of a position or an angle in the connector of the

library for 1D mechanics may not be available if this

variable is not chosen as a state, input variable, or output

variable. This problem is solved by proper instrumenta-

tion, which will be described in the next section.

4.3. Instrumentation and ranking procedure

We implemented a prototype of instrumentation and com-

ponent ranking in the OpenModelica framework.8,22 The

original model is automatically extended with energy

equations during the model translation. The metric is then

calculated using simulation results in the postprocessing

phase. The implementation, which shows two important

add-ons in the modified translation – instrumentation, and

metric calculation and ranking – is presented in Figure 2.

The overall procedure can be described as follows.

� After the model sources are parsed and the abstract

syntax tree (AST) is generated, the instrumentation

is performed.
� Firstly, all appropriate connection statements are

extracted. This is done by traversing the model

equations (AST) and, whenever a connection state-

ment that describes a physical interaction is encoun-

tered, it is added to the list.
� A set of all admissible connector types and how to

calculate the corresponding energy flow for each is

given as a Modelica package. The package contains

a component wrapping equation(s) for energy-flow

calculation(s) for each connector type. An imple-

mentation example of such a component for the con-

nector from the Mechanics.Translational
library is as follows:

block MechanicsTranslational
input SI.Position s;

Figure 2. Modified translation process for the implementation
of component ranking with energy-based metrics.
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input SI.Force f;
output SI.Power power;
annotation(connectorType=
{"Modelica.Mechanics.Translational
.Interfaces.Flange_a",
"Modelica.Mechanics.
Translational.Interfaces.Flange_b"});
equation
power = der(s)*f;
end MechanicsTranslational;

The component is the block with inputs (potential and

flow variables SI.Position s and SI.Force f) from
the connector definition and output – the energy flow is

named power. In the equation section, the energy flow is

calculated. The component is matched with the connection

type by the use of the tool-defined annotation

connectorType where fully qualified names of match-

ing connector types are stated.

� Simultaneously, the connection graph with informa-

tion about the matching of the added equations with

corresponding connectors is composed and stored

in the environment. Using this information, relevant

components and their energy flows can be extracted

after the simulation.
� For each connection describing physical interac-

tion, an equation for energy flow of this interaction

is added into the model.
� The described instrumentation approach ensures

that all the required information needed for further

simulation and metric calculation and ranking is

available (e.g., variables for appropriate metric cal-

culation are available).
� Simulation of the expanded model is performed and

energy flows associated with components are calcu-

lated using Equation (13) and the information pro-

vided by the connection graph.
� Then the importance of each component according

to a selected ranking metric (e.g., Equation (2) or

(3)) can be evaluated and, finally, the components

are sorted according to their importance. This con-

cludes the ranking procedure.

4.4. Component elimination

Ranking the components of the model is just the first step

of model reduction. It is followed by the elimination of the

low-ranked components or their replacement with simpler

ones.

The method of Louca14 relies on the classification of

elements, enabling the interpretation of eliminated ele-

ments in an idealized physical model. The same approach

is also applicable for Modelica models by compiling a

database of rules on how to simplify each component,

which is of course a tedious task, especially when third-

party libraries are to be included. For example, if a resistor

is associated with low energy, but the connections of its

pins are not, it should be replaced with a short circuit, oth-

erwise with an open circuit, etc. The removal of a compo-

nent with three pins (e.g., a transistor) requires even more

rules.

However, it is difficult to conceive very general rules

for component removal because it depends on the defini-

tion of the connector. In some cases the eliminated compo-

nent must be replaced with a component that enforces the

appropriate boundary conditions (e.g., if a position is used

as a connector variable instead of the velocity and a zero-

velocity boundary condition is required).

An additional option for the automatic removal of the

components is to flatten each component and analyze its

equations using a designated algorithm. However, in order

to reduce very heterogenous models completely automati-

cally, many aspects and side-effects of the component

removal must be considered and, consequentially, the algo-

rithm becomes very complicated and might still need man-

ual intervention in many cases.

Finally, it is reasonable and efficient if the task of com-

ponent elimination can be left to the user. For many pur-

poses just the ranking of the components is sufficient. For

example, when a model is inspected for components that

are too complicated or should be more detailed, an expla-

nation for a specific model behavior is sought, etc.

5. Illustrative examples
5.1. A simple mechanical system

In Figure 3, a model of a simplified car suspension is

depicted.14

The model is composed of a wheel with a tire with

mass mt, compliance Kt, and damping bt. Above the

wheel is a suspension system with compliance Ks and

damping bs, and above that is the remaining mass ms

(mass of the system), which consists of the car body mass

Figure 3. Ideal physical model of a car suspension.
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and the mass of the suspension system. The mass ms is

much larger than the mass of the wheel, and also the com-

pliance and damping of the suspension system, Ks and bs,

are much larger than that of the wheel. Both springs have

nonlinear characteristics:

FKs =K1s(xs � xt)+K3s(xs � xt)
3

FKt =K1t(xt � xr)+K3t(xt � xr)
3

The input to the system is the elevation of the ground

xr. The car hits a smooth curb, which is modeled with the

following function (see the input signal xr in Figure 4):

xr(t)=
0:4(t � 1)� 0:1

p
sin(4p(t � 1)) ; 14 t4 1:5

0 ; t \ 1

0:2 ; t . 1:5

8<
:

ð14Þ

The reference (and initial) elevation is defined to be

zero. The parameters of the model have the values shown

in Table 1.

[AQ: 2]The corresponding model is built in Modelica

using components from the Modelica Standard mechanical

library except the spring components, which have a non-

linear constitutive law and are custom made. The sche-

matic diagram of the model is shown in Figure 5.

There is only one type of interaction between the com-

ponents, that is, translation in one dimension, and conse-

quently only one type of connector is used. This connector

consists of two variables: the absolute position s and the

force f. Thus, the equation for a determination of the

energy flow _e is as follows:

_e=
d

dt
s � f ð15Þ

In the first experiment the model is excited with a

smoothed step signal. Figure 6 depicts the input signal and

the appropriate responses – displacements of the mass of the

wheel mass_t and of the system (body of the car) mass_s.

The components are ranked according to the importance

determined by the activity metric in the first case and the

PCA of the component power (Karhunen–Loève expan-

sion) in the second case. The results are shown in Tables 2

and 3, respectively.

There are no significant differences between the rank-

ings in Table 2 and Table 3, which is to be expected for

such a simple system. The most insignificant components

having the lowest relative activity (importance) are

damper_t, mass_t. If they are eliminated from the

model, the response of the model, with the same input sig-

nal, changes only slightly: the RMS errors of displacement

of the wheel and the system (car body) are only 0.06 and

0.03 cm, respectively. An idealized physical representation

of the reduced model and its realization in Modelica are

illustrated in Figures 7 and 8, respectively.

Note that the same reduced model as depicted in Figure

7 was obtained using simplifications with theoretical mod-

eling by Matko et al.23

Figure 4. Smooth curb signal.

Table 1. Values of the model parameters.[AQ: 1]

mt = 36:6 [kg] ms = 267:0 [kg]
βt = 200:0 [N · s/m] βs = 700:0 [N · s/m]
kt,1 = 193:915 [N/m] ks,1 = 18:742 [N/m]
kt,3 = 2 · 108 [N/m3] ks,3 = 2 · 105 [N/m3]

Figure 5. Realization of the model of the car suspension
system as a Modelica object diagram.

8 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



In the second experiment, an exact (sharp) step signal

was used instead. The response of the system is illustrated

in Figure 9.

Comparing Figures 9 and 6, we notice much higher fre-

quencies when the system is excited with the sharp step

signal. The component ranking using the activity metric is

given in Table 4.

The component rankings given in Tables 2 and 4 differ

at first glance because a different input signal was used,

the latter having a higher frequency range than the former.

Therefore, the components mass_t (mt � ms) and

spring_t (much stiffer than spring_s) are of the

highest rank in Table 4, while mass_s has a low rank. If

we follow the same procedure as in the previous experi-

ment, the components having lowest relative activity are

removed from the model. However, ground is a

restricted component as it is connected to the input signal

and hence cannot be removed. Instead, the components

gravityForce_t and mass_s are removed from the

model so that the reduced model depicted in Figures 10

and 11 is obtained.

A comparison with the reduced model from Figure 7

shows that the removal of a component representing a

Figure 6. Excitation signal of the simple mechanical system
model and appropriate responses.

Table 2. Component ranking of the model from Figure 5 using
the activity metric for the smoothed input signal.

Element Activity [J] Relative [%] Accumulated [%]

gravityForce_s 2270.06 37.06 37.06
spring_s 1763.33 28.79 65.85
ground 795.02 12.98 78.82
mass_s 787.65 12.86 91.68
damper_s 198.82 3.25 94.93
spring_t 192.57 3.14 98.07
gravityForce_t 92.98 1.52 99.59
mass_t 24.53 0.40 99.99
damper_t 0.53 0.01 100.00

Table 3. Component ranking of the model from Figure 5 using
the principal component analysis of the component power and
smoothed input signal.

Element Relative importance [%] Accumulated [%]

gravityForce_s 30.84 30.84
spring_s 26.13 56.97
ground 25.83 82.80
mass_s 10.18 92.97
spring_t 2.76 95.73
gravityForce_t 2.39 98.12
damper_s 1.43 99.56
mass_t 0.44 99.99
damper_t 0.01 100.00

Figure 7. Reduced model from the first experiment.

Figure 8. Realization of the reduced model from the first
experiment in Modelica.

Sodja et al. 9



body with mass (e.g., components mass_t and mass_s)
can be interpreted in two different ways:

1. the dynamic force of the body is considered negli-

gible, that is, its mass is small (m ’ 0);

2. the movement of the body is considered negligible,

that is, it has a very large mass (m! ‘).

In the former case the connections of the components

are joined into one connection point representing a massless

body (mt in the first experiment) and in the latter case the

connections are grounded (ms in the second experiment).

Furthermore, special attention must be given to the

elimination of the components from the Modelica model,

that is, how the removal of a component will affect the

initialization problem. Inappropriate removal means that

the solver will not be able to initialize the model. For

example, grounding the component mass_s causes the

removal of two degrees of freedom. If the simulation starts

from the steady state for damper_s and damper_t, the

initial values of the displacement velocity cannot be set for

both of them (which was possible in the full model). In that

case, removing mass_s from the model thus also requires

the reconfiguration of either damper_s, damper_t, or
mass_t.

As mentioned before, the step signal is a relatively

frequency-rich signal and all the components of the model

become excited, so the model cannot be significantly

reduced. However, the activity metric produces misleading

results. It only gives merits to the fast dynamics and hence

an error in the behavior of the reduced model in compari-

son with the full model is significant. The responses of the

full model (Figure 3) and the reduced model (Figure 10)

excited by the sharp step signal are shown in Figure 12.

The displacement of the mass masss is totally mismatched

due to the grounding of the component and, for the same

reason, the displacement of the wheel has an error in the

steady state.

It is also a good example showing that the most impor-

tant modeling phase – model validation – must be consid-

ered. It also checks operating conditions – in this case the

shape of the input signal. If the complete model (before

model reduction) is supposed to work for different input

signals, it is obvious that the simplified models can only

be used with limitations (e.g., when the sharp step signal

is implemented, the reduced model takes into account the

fast dynamics and satisfactorily describes only the move-

ment of the wheel).

5.2. DC motor

Another illustrative example is the model of an electrical

DC motor23,24 that can be found in the Modelica Standard

Library (Modelica.Mechanics.MultiBody.Examples.Syste

ms.Robot R3.oneAxis) and is shown in Figure 13.

The model consists of components describing the

mechanical and electrical properties of the motor (Ra, La,
emf, Jmotor) and its control electronics: a proportional–

integral (PI) controller realized with analog electrical

Figure 9. The response of the mechanical system depicted in
Figure 5.

Table 4. Component ranking of the model from Figure 5 using
the activity metric with a sharp step signal at the input.

Element Activity [J] Relative [%] Accumulated [%]

mass_t 8:16 · 104 43.42 43.41
spring_t 7:92 · 104 42.10 85.52
spring_s 9:33 · 103 4.96 90.48
damper_s 8:75 · 103 4.65 95.13
gravityForce_s 2:78 · 103 1.48 96.61
damper_t 2:39 · 103 1.27 97.88
mass_s 1:93 · 103 1.02 98.91
ground 1:60 · 103 0.85 99.76
gravityForce_t 4:51 · 102 0.24 100.00

Figure 10. Reduced model from the second experiment.
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components (OPI, C, and Ri), a power amplifier (power,
Rp1, and Rp2), etc.

The results of the component rankings for the DC motor

model using the activity metric are shown in Table 5.

The highest-ranked components are the components

comprising the electrical and mechanical properties of the

motor and the power-amplifier components (components

from Rp1 to La). Considering only those components, the

ranking results suggest that the component La– armature

inductivity (i.e., inductivity of the motor windings) – has

an insignificant effect on the model dynamics and can thus

be removed. This is the well known simplification usually

used when modeling electrical DC motors.23,24

The remaining components, which belong to the model

of the motor controller, can be found at the bottom of

Table 5 with an AI that is an order of magnitude smaller

because they are associated with much less energy than

the power part of the motor. However, a model of the con-

troller or any of its parts cannot be removed from the

model without significantly changing the model behavior.

The ranking presented in Table 5 must therefore be

carefully used and the physical understanding is usually

important. Definitely, we can obtain useful information

that can be used for ‘‘manual’’ reduction. We doubt that

the reduction process can be fully automated.

The ranking based on the Karhunen–Loève expansion

of the component energy flows and the calculation of the

importance vectors using Equation (6) generates very sim-

ilar results. Some improvements can be obtained with a

normalization of the energy-flow trajectories prior to the

Karhunen–Loève expansion being performed.

The weakness of the energy-based metrics could be

mitigated by also considering the sensitivity of the energy

flow to the removal of the neighboring components (con-

nections), as suggested by Ye and Youcef-Toumi.16

However, it is difficult to implement this method for most

Modelica models, because it requires each energy-storing

element in a separate component to have a function map-

ping the energy flow back to the state variable available.

An example of model reduction based on object dia-

grams and energy-based metric modeling of thermal and

radiation flows in a building is described and analyzed by

Zupančič.25

So, the component elimination of object diagrams with

an energy-based metric can be problematic even with a

more sophisticated metric. Sometimes, other model-

reduction methods should be used, for example, those that

operate on the equation system of the model. These meth-

ods also represent a part of our research activities. As the

focus of the paper is on the reduction of object diagrams,

the reduction at the equation level will be only briefly pre-

sented in the next section.

6. Realization-preserving reduction at the
equation level

Models in Modelica are usually implemented in several

hierarchical levels. At the bottom of the hierarchy,

Figure 11. Realization of the reduced model from the second
experiment in Modelica.

Figure 12. Comparison of the full and reduced model
responses to the sharp step input signal.
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differential-algebraic equations (DAEs) are used for the

component description, while for higher levels model it is

described graphically with object diagrams. Bearing in

mind the difficulties described in previous sections when

the reduction was implemented on object diagrams, the

possibilities for reduction at the equation level must also

be considered.

The most general representation of a dynamical system

is the DAE is as follows:

F( _x,x, y, t)= 0 ð16Þ

where x is the vector of system states, _x is the vector of

corresponding derivatives, y is the vector of algebraic vari-

ables, and t is the independant variable. This basic descrip-

tion is usually composed of several (n) terms:

t1(x, _x, y)+ . . . + tj(x, _x, y)+ . . . + tn(x, _x, y)= 0

ð17Þ

tj(x, _x, y) designates expressions, that is, terms, of the

variables x, _x, and y. An elementary reduction acting on

term tj(�) in Equation (17) could thus delete it or replace it

with a simple expression, that is, a constant value or a lin-

earized expression. The procedure is based on terms rank-

ing, which shows the importance of a particular term to

the model trajectories.

Figure 13. Schematic of a motor model.

Table 5. Ranking of the motor model components using the
activity metric.

Element Activity [J] Relative [%] Accumulated [%]

power 5.78 · 103 47.70 47.70
Rp1 2.98 · 103 24.56 72.26
Ra 1.65 · 103 13.66 85.92
Rp2 7.44 · 102 6.14 92.06
Jmotor 5.24 · 102 4.33 96.38
flange_motor 4.36 · 102 3.60 99.98
La 1.85 0.02 100.00
OpI 0.08 0.00 100.00
C 0.08 0.00 100.00
Vs 0.03 0.00 100.00
hall2 0.03 0.00 100.00
Rd1 0.02 0.00 100.00
Rd2 0.02 0.00 100.00
. . . . . . . . . . . .
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There are already tools available commercially26 for

the reduction and simplification of a general set of DAEs.

The method combines various algebraic manipulations and

approximation techniques, for example, deletion of a sin-

gle term in an equation, replacement of a term with a con-

stant, deletion of a variable or its derivative, etc.

We developed a prototype toolbox19,27 for the Open

Modelica environment in which we used an approach

originally developed for the model reduction of

nonlinear DAEs, entitled Behavioural model generation

(BModGen).26,28,29 A decision about which elemental

reduction operation should be performed depends entirely

on an estimation of how much the considered operation

will change the behavior of the model in the specific simu-

lation experiment(s). In our toolbox, we implemented only

term deletion and replacement with constant values due to

their being identified in the literature as the most effective

methods.29

7. Conclusions

An energy-based model-reduction technique and its imple-

mentation in Open Modelica was presented. To the best of

our knowledge there are no implementations for Modelica,

one of today’s most commonly used object-oriented multi-

domain modeling languages, which would enable

realization-preserving model reduction.

The presented approach does not require any special

formulation of the model and thus can be applied to many

already-existing models. However, the price we pay for

this generality is a loss of performance and an increased

complexity of the algorithm, because less a priori knowl-

edge about the model is available. So, either an extensive

set of reduction rules must be provided or only the most

basic reduction operations can be performed, for example,

elimination of the components associated with low energy.

Whereas a component ranking can be implemented

quite effectively with a minimum required input from the

user by the approach described, a proper removal of the

components is more difficult. Although the appropriate

rule for the removal of a component can be derived auto-

matically from its constitutive law, there must also be

side-effects taken into account that may not be resolvable

locally, for example, the initial values of the other compo-

nents might need to be modified in order to preserve the

consistency of the initial value problem, as demonstrated

in the examples.

Nevertheless, even if the model-reduction tool cannot

reduce the model completely automatically, it may still

offer many useful insights and hints to the user. We are

also aware of the fact that we refer to problems of complex

dynamical models but that the examples are rather simple.

Namely, our activity can be treated as an initial attempt. It

works on smaller parts in a semi automatic way, so that

usually some manual operations are needed. We are not

sure if the approaches can be automatically used for real

complex models in the future.
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25. Zupančič B. Computer aided support for the temperature

control in buildings. Int J Simulat Proc Model 2017; 12:

459–469.

26. Sommer R, Halfmann T and Broz J. Automated behavioral

modeling and analytical model-order reduction by applica-

tion of symbolic circuit analysis for multi-physical systems.

Simulat Model Pract Theor 2008; 16: 1024–1039.
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